Structural Determination of a Process Impurity in a Furan—Pyrrole Heteroatom Exchange Reaction

Bryan Li,* Narasimhan Kasthurikrishnan, John A. Ragan, and Gregory R. Young

Chemical Research and Development, Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, U.S.A.

Abstract:

Electron-deficient pyrrole (1) was derivatized by diazotization with p-nitrobenzene diazonium chloride. Reduction of the diazo intermediates gave 2- and 1-aminopyrroles (3) and (3). The 2-aminopyrrole (3) was determined to be the process impurity formed during a furan—pyrrole heteroatom exchange reaction. An oxidative mechanism for the impurity formation was hypothesized. Nitrogen sparging of the reaction mixture prior to heating eliminated formation of (3).

Introduction

The preparation of 1, involved heating the furan precursor 2 with ammonium acetate in N-methylpyrrolidinone at 100-105 °C (Scheme 1). An impurity was formed in the reaction at 0.7% level (by HPLC area), which after recrystallization and Darco treatment, was still present at 0.5% level. The unknown impurity possessed a mass of M + NH, further MS/MS/MS fragmentation studies of the impurity identified the modification occurred at the pyrrole ring, and several structures were proposed (Figure 1).

Results and Discussion

Structures 4 and 5 were viewed as possible byproducts from small quantities of hydrazine, which might be formed under the reaction conditions by adventitious O_2 (or other oxidants) and ammonium acetate.² However, when 2 was treated with hydrazine acetate in NMP, a new product (presumably 4 or 5) was formed which had the same mass as the impurity, but did not coelute. Positive structural confirmation for the impurity came from the successful synthesis of 2-aminopyrrole 3.

We reasoned that diazotization of the pyrrole ring would offer a convenient access to the amino derivative. A literature survey showed many examples of pyrrole diazotization, but mostly on electron-rich pyrrole systems.³ The same trans-

Scheme 1

formation was lesser known for electron-deficient pyrroles.⁴ When 1 was treated with p-nitrobenzenediazonium chloride prepared in situ from p-nitroaniline in 6 N HCl with sodium nitrite at 0 °C (Scheme 2), no reaction was observed. We felt that an elevated reaction temperature was needed for such an electron-poor pyrrole ring; indeed, warming to room temperature led to the 2-azo intermediate, although the reaction remained sluggish.⁵ N-azo intermediate was also formed as a byproduct, which was an unexpected finding.6 It is noteworthy that diazotizations of pyrroles had been reported to occur exclusively at C-2 when it is unsubstituted, and diazotization at the nitrogen of pyrroles is only preceded by an intramolecular diazotization to give 1,2,3-triazine from a 2-(1H-pyrrol-2-yl)aniline. Upon treatment with SnCl₂ in acetic acid, 3 and 4 were obtained, respectively. It was gratifying to find that 3 coeluted with the unknown impurity. In addition, MS/MS/MS studies showed 3 to have identical fragmentation patterns to the unknown impurity. Also, the synthesized material was identical to the fractionated sample of the impurity by ¹H NMR and HPLC retention time.

Figure 1.

^{*} To whom correspondence should be addressed. Fax: (860)715-7305. E-mail: bryan_li@groton.pfizer.com.

Similar heteroatom exchange reactions had previously been reported: (a) Matsuura, T. Preparation of 4-Hydroxyindoles and their intermediates. Jpn. Kokai Tokkyo Koho JP 2000044555. (b) Hargis, D. C.; Shubkin, R. L. Tetrahedron Lett. 1990, 31, 2991. (c) Nagarajan, K.; Talwalker, P. K.; Goud, A. N.; Shah, R. K.; Shenoy, S. J.; Desai, N. D. Indian J. Chem., Sect. B 1988, 27B, 1113. (d) Bromidge, S. M.; Archer, D. A.; Sammes, P. G. Synthesis 1992, 7, 645. (e) Martin, A.; Luecke, B. J. Chem. Soc., Chem. Commun. 1993, 23, 1745.

⁽²⁾ There is no literature report of such a reaction, but a closely related example is known. Propane-1,3-diamine, oxidized by aqueous NaClO, gave pyrazolidine: Luettringhaus A.; Jander, J.; Schneider, R. Chem. Ber. 1959, 92, 1756

Scheme 2

NHAr
$$O_2N$$
— N_2 *Cr N_2 *Cr

Scheme 3

While it remains unclear how **3** was formed during the furan—pyrrole heteroatom exchange reaction, furan epoxidations, well-documented in the literature, suggested an oxidative mechanism. Several pathways can be postulated, one example is shown (Scheme 3). Other oxidative mechanisms are also plausible via a two-electron oxidation of the diketone **6** (Scheme 4). The mechanism also highlighted optimization of the heteroatom exchange reaction shown in Scheme 1. Reaction conditions free of oxidants helped prevent the formation of the 2-aminopyrrole impurity; nitrogen sparging of the reaction mixture prior to heating eliminated the impurity formation.

In conclusion, we have found that electron-deficient pyrrole (1) can be diazotized at both 1- and 2-positions. The synthesis of the amino derivatives (3 and 4) provided

- (3) (a) Butler, A. R.; Shepherd, P. T. J. Chem. Soc., Perkin Trans. 2 1980,
 113. (b) Bonnett, R.; North, S. A.; Newton, R. F.; Scopes, D. I. C. Tetrahedron 1983, 39, 1401.
- (4) A relatively electron-deficient system, 3-acetyl-4-phenylpyrrole was reported: Cirrincione, G.; Almerico, A. M.; Diana, P.; Barrja, P.; Mingoia, F.; Grimaudo, S.; Dattolo, G. J. Heterocycl. Chem. 1996, 33, 161.
- (5) LC/MS monitoring of reaction mixtures using an ion trap mass spectrometer.
- (6) Cirrincione, G.; Almerico, A. M.; Barraja, P.; Diana, P.; Lauria, A. J. Med. Chem. 1999, 42, 2561.
- (7) Dattolo, G.; Cirrincione, G.; Almerico, A. M.; D'Asdia, I.; Aiello, E. Heterocycles 1982, 19, 681.
- (8) (a) Ruzo, L. O.; Casida, J. E.; Holden, I. J. Chem. Soc., Chem. Commun.
 1985, 22, 1642. (b) Adam, W.; Sauter, M. Tetrahedron 1994, 50, 11441.
 (c) Adam, W.; Bialas, J.; Hadjiarapoglou, L.; Sauter, M. Chem. Ber. 1992, 125231.
- (9) (a) Benati, L.; Montevecchi, P. C.; Spagnolo, P.; Foresti, E. J. Chem. Soc., Perkin Trans. 1 1992, 21, 2845. (b) House, G. J. Org. Chem. 1958, 23, 879. (c) Adam, W.; Smerz, A. K. Tetrahedron, 1996, 52, 5799.

Scheme 4

unambiguous structural assignment to the process impurity, and the hypothesized oxidative mechanism for the impurity formation facilitated process development of the reaction.

Experimental Section

 1 H and 13 C NMR spectra were obtained in DMSO- d_6 with DMSO- d_6 (1 H, 2.49 ppm, 13 C, 39.5 ppm) as an internal reference using Varian 400. HPLC analyses were carried out using an Intersil C8 column (3.9 mm \times 150 mm) with acetonitrile: pH 3.2 buffer (40/60) as mobile phase (1 mL/min) and detection at 205 nm wavelength. Preparative thin-layer chromatography was conducted using E. Merck precoated TLC plates (2 mm) using methylene chloride/acetic acid (95:5) as mobile phase. A Finnigan (San Jose, CA) LCQ ion trap instrument coupled to an HP 1100 liquid chromatograph was used for all MS data acquisition. LC/MS analysis

was performed using both atmospheric pressure chemical ionization (APCI) and electrospray ionization.

LC/MS Conditions. For unequivocal identification of the molecular weight of the unknown impurity, both negative and positive modes of ionization were used. The operating electrospray conditions were 890 V multiplier voltage, 5 kV source voltage, 220 °C capillary temperature, sheath gas flow rate setting of 60, auxiliary gas flow rate setting of 20, and a background pressure of 1.23 \times 10 $^{-5}$ Torr. The operating APCI conditions were 890 V multiplier voltage, 3.5 kV source voltage, 3 kV capillary voltage, 150 °C capillary temperature, sheath gas flow rate setting of 80, auxiliary gas flow rate setting of 20, and a background pressure of 1.29 \times 10 ⁻⁵ Torr. Data were acquired by scanning the mass spectrometer over the m/z range of 60–2000. Samples were introduced into the ion source of the mass spectrometer via HP 1100 autosampler. An Intersil C8 column (3.9 mm × 150 mm) and ammonium formate (pH 3)/acetonitrile gradient elution system was used for separation analysis.

Collision-Induced Dissociation Experiments. The optimum relative collision energy parameter was experimentally determined to be 28% by directly infusing standard solution of 1 at a rate of 5 μ L/min. During MS/MS/MS experiments, the following ion trap parameters were used: Fixed ionization time, 400 ms; Isolation width, 3 amu; and AGC on with a target setting of 1×10^{-7} Torr.

4-Oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3carboxylic Acid (2-Fluoro-4-methoxy-phenyl)amide (1). Under nitrogen atmosphere, a mixture of 2 (735 g, 2.32 mol) and ammonium acetate (1249 g, 16.22 mol) in N-methylpyrrolidinone (1.47 L) was heated to 100-105 °C for 24 h. The reaction was cooled to 25 °C, and water (13.2 L) was added. The resulting mixture was stirred for 17 h at 25 °C, and filtered. The filter cake was rinsed with water and dried under vacuum at 40-45 °C to give 729 g of crude product as dark brown solids (purity 94.8% by HPLC). The crude product was stirred in methanol (33.7 L), and filtered through Celite. To the filtrate was added 116 L of water, and the resulting slurry was stirred for 24 h. The mixture was filtered, and the solids were dried under vacuum at 40-45 °C to give 567 g of dark colored solids (purity 98.5% by HPLC). This crude product was stirred in acetone (17.0 L), and Darco

G-60 (567 g) was added. After stirring for 30 min at 20–25 °C, the mixture was filtered. The filtrate was concentrated under vacuum to \sim 0.85 L and crystallization occurred. The mixture was granulated for 30 min and then filtered. The filter cake was rinsed with acetone (120 mL) and dried under vacuum at 50–60 °C to yield 320 g (1.01 mol, 43%) of **1** as off-white solids (purity 99.3% by HPLC). ¹H NMR δ 12.40 (s, 1H), 12.04 (s, 1H), 8.18 (t, J = 8.8 Hz), 6.91 (s, 1H), 6.89 (dd, 1H, J = 2.4 and 12.8 Hz), 6.72 (dd, 1H, J = 2.4 and 8.8 Hz); ¹³C NMR δ 200.12, 161.12, 155.88, 155.78, 154.78, 152.34, 146.57, 126.16, 123.62, 120.21, 117.84, 109.55, 101.76, 101.54, 55.56, 40.93, 25.34, 23.11, 20.69 MS m/z 317 (M + 1), 177, 149.

2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-cyclohepta[b]pyrrole-3-carboxylic Acid (2-Fluoro-4-methoxy-phenyl)amide (3). To 4-nitroaniline (1.57 g, 11.4 mmol) in 6 N HCl (8.55 mL) at 0 °C was added dropwise with 30% NaNO₂ solution in water (wt/wt). After 10 min at 0 °C, 1 (1.20 g, 3.8 mmol) with NaOAc (2.50 g) in AcOH (50 mL) was added. The resulting reaction mixture was stirred at room temperature for 3 h and worked up by extraction with ethyl acetate. The 2-azo (47 mg) and N-azo (3.0 mg) intermediates were obtained by silica gel column chromatography; 0.87 g of 1 was recovered. The 2-azo intermediate (45 mg) was heated with SnCl₂ (100 mg) in AcOH (2 mL) at 80 °C for 1 h to give the desired product 3 (17.5 mg) after preparative TLC purification: ¹H NMR δ 12.29 (s, 1H), 8.14 (t, J = 9.2 Hz, 1H), 6.88 (dd, J = 12.8 and 2.8 Hz, 1H), 6.72 (dd, J = 9.2and 2.8 Hz), 6.48 (s, 2H), 2.83-2.85 (s, 2H), 2.62-2.65 (s, 2H), 1.69–1.76 (s, 2H); 13 C NMR δ 198.28, 164.45, 155.07, 154.99, 154.33, 152.39, 148.24, 141.83, 123.38, 120.72, 116.39, 109.33, 101.57, 101.38, 55.52, 40.84, 25.22, 22.98, 20.70; MS m/z 331 (M + 1), 191, 163, 135.

Acknowledgment

We thank Andy Jessen and Linda Lohr for their technical support in NMR and Brian Chen and Mark Guinn for providing a fractionated sample.

Received for review September 4, 2001. OP010227U